Тема: Треугольники (Задачи на построение)
Условие задачи полностью выглядит так:
160 Прямая а проходит через середину отрезка АВ и перпендикулярна к нему. Докажите, что: а) каждая точка прямой а равноудалена от точек А и B; б) каждая точка, равноудаленная от точек А и B, лежит на прямой а.
Решение задачи:


Пусть а пересекает АВ в точке О.
а) Выберем любую точку С на прямой а. ΔАВС - равнобедренный, так как СО - медиана и высота, значит, АВ = ВС.
б) Пусть АС - СВ, где С - любая точка плоскости, удовлетворяющая равенству. Тогда ΔABC - равнобедренный и СО - медиана и высота. Значит, СО лежит на прямой а, т. е. С ∈ а.

Задача из главы Треугольники по предмету Геометрия из задачника Геометрия. 7-9 класс, Атанасян, Бутузов, Кадомцев, Позняк, Юдина (7 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
davay5.com