|
Тема: Перпендикулярность прямых и плоскостей (Двугранный угол. Перпендикулярность плоскостей §3) Условие задачи полностью выглядит так:
168. Двугранный угол равен φ. На одной грани этого угла лежит точка, удаленная на расстояние d от плоскости другой грани. Найдите расстояние от этой точки до ребра двугранного угла.
|
Решение задачи:
* в задачах этого параграфа двугранный угол с ребром ав, на разных гранях которого отмечены точки с и d, для краткости будем называть так: двугранный угол cabd.
 решение: известно, что
 mn ⊥ α - по условию (расстояние есть длина перпендикуляра). в пл. α проводим ne ⊥ ab;
 то по теореме о 3-х перпендикулярах ем⊥ав, значит, р(м, ав) = ме. т.о. ∠men - линейный угол двугранного угла mabn, ∠men = φ (по условию).

 (из соотношений в прямоугольном треугольнике). ответ:
|
Задача из главы Перпендикулярность прямых и плоскостей по предмету Геометрия из задачника Геометрия 10-11 класс, Атанасян (10 класс)
Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач
и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)
|
|
Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте!
Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
davay5.com |