Тема: Четырехугольники § 6
Условие задачи полностью выглядит так:
№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник A1B1C1D1 есть квадрат.
Решение задачи:


№ 42. дан квадрат abcd. на каждой из его сторон отложены равные отрезки aa1=bb1=cc1=dd1. докажите, что четырехугольник a1b1c1d1 есть квадрат.

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

рассмотрим

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

(по условию). а значит и

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

(т.к. abcd — квадрат). тогда,

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

(по двум катетам). значит,

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

а также

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

∠ad1a1 + ∠aa1d1 = 90° (сумма острых углов прямоугольного треугольника). значит,

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

а так как

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

аналогично доказывается, что и остальные углы четырехугольника

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

прямые. тогда, данный четырехугольник

№ 42. Дан квадрат ABCD. На каждой из его сторон отложены равные отрезки AA1=BB1=CC1=DD1. Докажите, что четырехугольник

является квадратом. что и требовалось доказать.

Задача из главы Четырехугольники § 6 по предмету Геометрия из задачника Геометрия. 7-11 класс, Погорелов (8 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
davay5.com