Задачи по теме Дополнительные задачи
из учебника Атанасян, Бутузов, Кадомцев, Позняк, Юдина (глава Начальные сведения из стереометрии)

1232 Докажите, что диагональ параллелепипеда меньше суммы трех ребер, имеющих общую вершину.
1233 Докажите, что сумма квадратов четырех диагоналей параллелепипеда равна сумме квадратов двенадцати его ребер.
1234 Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечения плоскостями АВС1 и DCB1 а также отрезок, по которому эти сечения пересекаются; б) его сечение плоскостью, проходящей через ребро СС1 и точку пересечения диагоналей грани AA1D1D).
1235 Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью BKL, где К — середина ребра AA1 , a L — середина ребра СС1. Докажите, что построенное сечение — параллелограмм.
1236 Сумма площадей трех граней прямоугольного параллелепипеда, имеющих общую вершину, равна 404 дм2, а его ребра пропорциональны числам 3, 7 и 8. Найдите диагональ параллелепипеда.
1237 Найдите объем куба ABCDA1B1C1D1, если: а) АС =12 см; б) АС = 3√2 ; в) DE=1 см, где Е — середина ребра АВ.
1238 Найдите объем прямой призмы АВСА1B1С1, если AB=BC=m, ∠ABC=φ и BB1=BD, где BD — высота треугольника ABC.
1239 Наибольшая диагональ правильной шестиугольной призмы равна 8 см и составляет с боковым ребром угол в 30°. Найдите объем призмы.
1240 Изобразите тетраэдр DABC, отметьте точку К на ребре DC и точки М и N граней ABC и ACD. Постройте сечение тетраэдра плоскостью MNK.
1241 Основанием пирамиды является параллелограмм со сторонами 5 м и 4 м и меньшей диагональю 3 м. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 2 м. Найдите площадь поверхности пирамиды, т. е. сумму площадей всех ее граней.
1242 Найдите объем правильной треугольной пирамиды, высота которой равна 12 см, а сторона основания равна 13 см.
1243 В правильной n-угольной пирамиде плоский угол при вершине равен а, а сторона основания равна а. Найдите объем пирамиды.
1244 Алюминиевый провод диаметром 4 мм имеет массу 6,8 кг. Найдите длину провода (плотность алюминия равна 2,6 г/см3).
1245 Свинцовая труба (плотность свинца равна 11,4 г/см3) с толщиной стенок 4 мм имеет внутренний диаметр 13 мм. Какова масса трубы, если ее длина равна 25 м?
1246 Высота цилиндра на 12 см больше его радиуса, а площадь полной поверхности равна 288π см2. Найдите радиус основания и высоту цилиндра.
1247 Из квадрата, диагональ которого равна d, свернута боковая поверхность цилиндра. Найдите площадь ос-нования цилиндра.
1248 Высота конуса равна 5 см. На расстоянии 2 см от вершины его пересекает плоскость, параллельная основанию. Найдите объем этого конуса, если объем отсекаемого от него конуса равен 24 см3.
1249 Высота конуса равна 12 см, а его объем равен 324π см3. Найдите дугу развертки боковой поверхности этого конуса.
1250 Вычислите площадь основания и высоту конуса, если разверткой его боковой поверхности является сектор, радиус которого равен 9 см, а дуга равна 120°.
1251 Равнобедренный треугольник, боковая сторона которого равна m, а угол при основании равен φ, вращается вокруг основания. Найдите площадь поверхности тела, полученного при этом вращении.
1252 Шар и цилиндр имеют равные объемы, а диаметр шара равен диаметру цилиндра. Выразите высоту цилиндра через радиус шара.
1253 В цилиндрическую мензурку диаметром 2,5 см, наполненную водой до некоторого уровня, опускают 4 равных металлических шарика диаметром 1 см. На сколько изменится уровень воды в мензурке?
1254 Вода покрывает приблизительно ¾ земной поверхности. Сколько квадратных километров земной поверхности занимает суша (радиус Земли считать равным 6375 км)?
1255 В каком отношении находятся объемы двух шаров, если площади их поверхностей относятся как m2 : n2?

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
davay5.com