Тема: Метод координат (Дополнительные задачи)
Условие задачи полностью выглядит так:
992 Докажите, что треугольник ABC, вершины которого имеют координаты А (4; 8), В (12; 11), С (7; 0), является равнобедренным, но не равносторонним.
Решение задачи:



992 Докажите, что треугольник ABC, вершины которого имеют координаты А (4; 8), В (12; 11), С (7; 0), является равнобедренным

дано:

992 Докажите, что треугольник ABC, вершины которого имеют координаты А (4; 8), В (12; 11), С (7; 0), является равнобедренным

доказать:

992 Докажите, что треугольник ABC, вершины которого имеют координаты А (4; 8), В (12; 11), С (7; 0), является равнобедренным

992 Докажите, что треугольник ABC, вершины которого имеют координаты А (4; 8), В (12; 11), С (7; 0), является равнобедренным

992 Докажите, что треугольник ABC, вершины которого имеют координаты А (4; 8), В (12; 11), С (7; 0), является равнобедренным


Задача из главы Метод координат по предмету Геометрия из задачника Геометрия. 7-9 класс, Атанасян, Бутузов, Кадомцев, Позняк, Юдина (9 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн