Тема: Задачи повышенной трудности (К главе 9. Векторы)
Условие задачи полностью выглядит так:
909 Биссектрисы внешних углов треугольника ABC при вершинах А, В и С пересекают прямые ВС, СА и АВ соответственно в точках A1, В1 и C1. Используя векторы, докажите, что точки A1, В1 и С1 лежат на одной прямой.
Решение задачи:


решение. пусть ав = с, вс = а, са = b (рис. 343). согласно задаче 619

909 Биссектрисы внешних углов треугольника ABC при вершинах А, В и С пересекают прямые ВС, СА и АВ соответственно

эти три равенства можно записать так:

909 Биссектрисы внешних углов треугольника ABC при вершинах А, В и С пересекают прямые ВС, СА и АВ соответственно

или

909 Биссектрисы внешних углов треугольника ABC при вершинах А, В и С пересекают прямые ВС, СА и АВ соответственно

909 Биссектрисы внешних углов треугольника ABC при вершинах А, В и С пересекают прямые ВС, СА и АВ соответственно

из последних трех равенств следует, что

909 Биссектрисы внешних углов треугольника ABC при вершинах А, В и С пересекают прямые ВС, СА и АВ соответственно

909 Биссектрисы внешних углов треугольника ABC при вершинах А, В и С пересекают прямые ВС, СА и АВ соответственно


Задача из главы Задачи повышенной трудности по предмету Геометрия из задачника Геометрия. 7-9 класс, Атанасян, Бутузов, Кадомцев, Позняк, Юдина (8 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн