Тема: Задачи повышенной трудности (К главе 6. Площадь)
Условие задачи полностью выглядит так:
831 На сторонах АС и ВС треугольника ABC взяты точки М и X, а на отрезке MK — точка Р так, что AM/MC=CK/KB=MP/PK. Найдите площадь треугольника ABC, если площади треугольников АМР и ВКР равны S1 и S2.
Решение задачи:


решение. введем обозначение:

831 На сторонах АС и ВС треугольника ABC взяты точки М и X, а на отрезке MK — точка Р так, что AM/MC=CK/KB=MP/PK.

831 На сторонах АС и ВС треугольника ABC взяты точки М и X, а на отрезке MK — точка Р так, что AM/MC=CK/KB=MP/PK.

831 На сторонах АС и ВС треугольника ABC взяты точки М и X, а на отрезке MK — точка Р так, что AM/MC=CK/KB=MP/PK.

831 На сторонах АС и ВС треугольника ABC взяты точки М и X, а на отрезке MK — точка Р так, что AM/MC=CK/KB=MP/PK.


Задача из главы Задачи повышенной трудности по предмету Геометрия из задачника Геометрия. 7-9 класс, Атанасян, Бутузов, Кадомцев, Позняк, Юдина (8 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн