Тема: Векторы (Дополнительные задачи)
Условие задачи полностью выглядит так:
807 Пусть AA1, ВВ1 и СС1 — медианы треугольника ABC, О — произвольная точка. Докажите, что ОА + ОВ + OC= OA1+OB1+OC1.
Решение задачи:


дано:

807 Пусть AA1, ВВ1 и СС1 — медианы треугольника ABC, О — произвольная точка. Докажите, что ОА + ОВ

доказать:

807 Пусть AA1, ВВ1 и СС1 — медианы треугольника ABC, О — произвольная точка. Докажите, что ОА + ОВ

доказательство:
имеем:

807 Пусть AA1, ВВ1 и СС1 — медианы треугольника ABC, О — произвольная точка. Докажите, что ОА + ОВ

807 Пусть AA1, ВВ1 и СС1 — медианы треугольника ABC, О — произвольная точка. Докажите, что ОА + ОВ


Задача из главы Векторы по предмету Геометрия из задачника Геометрия. 7-9 класс, Атанасян, Бутузов, Кадомцев, Позняк, Юдина (8 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн