Тема: Подобные треугольники (Применение подобия к доказательству теорем и решению задач)
Условие задачи полностью выглядит так:
568 Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон: а) прямоугольника; б) равнобедренной трапеции.
Решение задачи:



568 Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон: а) прямоугольника; б) равнобедренной

а) дано: abcd - прямоугольник; м, n, к, е - середины сторон. доказать: mnke - ромб.
доказательство:

568 Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон: а) прямоугольника; б) равнобедренной

568 Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон: а) прямоугольника; б) равнобедренной

568 Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон: а) прямоугольника; б) равнобедренной

б) abcd - равнобедренная трапеция;
м, n, к, е - середины сторон доказать: mnke - ромб.

568 Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон: а) прямоугольника; б) равнобедренной

доказательство:
аналогично доказанному выше: ac = bd - диагонали.

Задача из главы Подобные треугольники по предмету Геометрия из задачника Геометрия. 7-9 класс, Атанасян, Бутузов, Кадомцев, Позняк, Юдина (8 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн