Тема: Треугольники (Задачи на построение)
Условие задачи полностью выглядит так:
179* На боковых сторонах АВ и АС равнобедренного треугольника ABC отмечены точки Р и Q так, что ∠PXB=∠QXC, где X— середина основания ВС. Докажите, что BQ=CP.
Решение задачи:



179* На боковых сторонах АВ и АС равнобедренного треугольника ABC отмечены точки Р и Q так, что ∠PXB=∠QXC

179* На боковых сторонах АВ и АС равнобедренного треугольника ABC отмечены точки Р и Q так, что ∠PXB=∠QXC


Задача из главы Треугольники по предмету Геометрия из задачника Геометрия. 7-9 класс, Атанасян, Бутузов, Кадомцев, Позняк, Юдина (7 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн