Тема: Треугольники (Задачи на построение)
Условие задачи полностью выглядит так:
149 Даны прямая а, точка В, не лежащая на ней, и отрезок PQ. Постройте точку М на прямой a так, чтобы ВМ = PQ. Всегда ли задача имеет решение?
Решение задачи:


возможны три случая:

149 Даны прямая а, точка В, не лежащая на ней, и отрезок PQ. Постройте точку М на прямой a так, чтобы ВМ = PQ. Всегда ли

на прямой есть две точки, удаленные от в на расстояние pq.

149 Даны прямая а, точка В, не лежащая на ней, и отрезок PQ. Постройте точку М на прямой a так, чтобы ВМ = PQ. Всегда ли

одна точка на прямой, которая удалена от в на расстояние pq.

149 Даны прямая а, точка В, не лежащая на ней, и отрезок PQ. Постройте точку М на прямой a так, чтобы ВМ = PQ. Всегда ли

не существует такой точки на прямой а.
pq = вм- радиус окружности с центром в точке в, так мы строили точку м. в третьем случае задача не имеет решения.

Задача из главы Треугольники по предмету Геометрия из задачника Геометрия. 7-9 класс, Атанасян, Бутузов, Кадомцев, Позняк, Юдина (7 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн