Тема: Метод координат в пространстве (Дополнительные задачи к главе 5)
Условие задачи полностью выглядит так:
510. В кубе ABCDA1B1C1D1 точка М — центр грани ВВ1С1С. Вычислите угол между векторами: а) A1D и АМ; б) MD и ВВ1.
Решение задачи:


обозначим ребро куба через а. тогда вершины куба имеют координаты:

510. В кубе ABCDA1B1C1D1 точка М — центр грани ВВ1С1С. Вычислите угол между векторами: а) A1D

510. В кубе ABCDA1B1C1D1 точка М — центр грани ВВ1С1С. Вычислите угол между векторами: а) A1D

510. В кубе ABCDA1B1C1D1 точка М — центр грани ВВ1С1С. Вычислите угол между векторами: а) A1D

а)

510. В кубе ABCDA1B1C1D1 точка М — центр грани ВВ1С1С. Вычислите угол между векторами: а) A1D

510. В кубе ABCDA1B1C1D1 точка М — центр грани ВВ1С1С. Вычислите угол между векторами: а) A1D

б)

510. В кубе ABCDA1B1C1D1 точка М — центр грани ВВ1С1С. Вычислите угол между векторами: а) A1D

510. В кубе ABCDA1B1C1D1 точка М — центр грани ВВ1С1С. Вычислите угол между векторами: а) A1D

510. В кубе ABCDA1B1C1D1 точка М — центр грани ВВ1С1С. Вычислите угол между векторами: а) A1D


Задача из главы Метод координат в пространстве по предмету Геометрия из задачника Геометрия 10-11 класс, Атанасян (10 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн