Тема: Метод координат в пространстве (Скалярное произведение векторов §2)
Условие задачи полностью выглядит так:
466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС. Вычислите косинус угла между прямыми: a) MN и DD1; б) MN и BD; в) MN и B1D; г) MN и А1С.
Решение задачи:


обозначим стороны через а. введем прямоугольную систему координат oxyz с началом в точке d. тогда вершины куба имеют координаты:

466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС.

466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС.

466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС.

а)

466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС.

466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС.

б)

466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС.

466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС.

в)



466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС.

466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС.

г)



466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС.

466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС.


Задача из главы Метод координат в пространстве по предмету Геометрия из задачника Геометрия 10-11 класс, Атанасян (10 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн