Тема: Метод координат в пространстве (Скалярное произведение векторов §2)
Условие задачи полностью выглядит так:
455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и DB1; в) DB и АС1.
Решение задачи:


пусть сторона куба равна а, следовательно:

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

а) в прямоугольном треугольнике аа1с1 положим, аа1= =0, тогда

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

по теореме пифагора.

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

б) векторы

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

лежат в плоскости bb1d, сечение куба этой плоскостью — это прямоугольник bb1d1d со сторонами а и а

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

по теореме косинусов в δb1od1:

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

следовательно

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

в)

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

(no свойству
диагонали квадрата).

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и

следовательно, bd перпендикулярно плоскости ас1с, тогда, bd ⊥ ac1,

455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и


Задача из главы Метод координат в пространстве по предмету Геометрия из задачника Геометрия 10-11 класс, Атанасян (10 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн