Тема: Метод координат в пространстве (Координаты точки и координаты вектора §1)
Условие задачи полностью выглядит так:
435. Даны точки A (1; 0; k), В (— 1; 2; 3) и С (0; 0; 1). При каких значениях k треугольник ABC является равнобедренным?
Решение задачи:


найдем длины сторон δabc по формуле расстояния между двумя
точками:

435. Даны точки A (1; 0; k), В (— 1; 2; 3) и С (0; 0; 1). При каких значениях k треугольник ABC является

435. Даны точки A (1; 0; k), В (— 1; 2; 3) и С (0; 0; 1). При каких значениях k треугольник ABC является

треугольник будет равнобедренным, если будет выполнено одно из трех условий: 1) ab=bc или 2) ab=ac, или 3) ac=bc
1)

435. Даны точки A (1; 0; k), В (— 1; 2; 3) и С (0; 0; 1). При каких значениях k треугольник ABC является

2)

435. Даны точки A (1; 0; k), В (— 1; 2; 3) и С (0; 0; 1). При каких значениях k треугольник ABC является

3)

435. Даны точки A (1; 0; k), В (— 1; 2; 3) и С (0; 0; 1). При каких значениях k треугольник ABC является

435. Даны точки A (1; 0; k), В (— 1; 2; 3) и С (0; 0; 1). При каких значениях k треугольник ABC является

435. Даны точки A (1; 0; k), В (— 1; 2; 3) и С (0; 0; 1). При каких значениях k треугольник ABC является


Задача из главы Метод координат в пространстве по предмету Геометрия из задачника Геометрия 10-11 класс, Атанасян (10 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн