Тема: Векторы в пространстве (Дополнительные задачи к главе 4)
Условие задачи полностью выглядит так:
393. В параллелепипеде ABCDA1B1C1D1 точка К—середина ребра СС1. Разложите вектор: а) АК по векторам АВ, AD, АА1; б) DA1 по векторам АВ1, ВС1, CD1.
Решение задачи:



393. В параллелепипеде ABCDA1B1C1D1 точка К—середина ребра СС1. Разложите вектор: а) АК по векторам АВ, AD, АА1; б) DA1 по

а)

393. В параллелепипеде ABCDA1B1C1D1 точка К—середина ребра СС1. Разложите вектор: а) АК по векторам АВ, AD, АА1; б) DA1 по

но

393. В параллелепипеде ABCDA1B1C1D1 точка К—середина ребра СС1. Разложите вектор: а) АК по векторам АВ, AD, АА1; б) DA1 по

таким образом

393. В параллелепипеде ABCDA1B1C1D1 точка К—середина ребра СС1. Разложите вектор: а) АК по векторам АВ, AD, АА1; б) DA1 по

б)

393. В параллелепипеде ABCDA1B1C1D1 точка К—середина ребра СС1. Разложите вектор: а) АК по векторам АВ, AD, АА1; б) DA1 по

поэтому

393. В параллелепипеде ABCDA1B1C1D1 точка К—середина ребра СС1. Разложите вектор: а) АК по векторам АВ, AD, АА1; б) DA1 по


Задача из главы Векторы в пространстве по предмету Геометрия из задачника Геометрия 10-11 класс, Атанасян (10 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн