Тема: Векторы в пространстве (Компланарные вектора §3)
Условие задачи полностью выглядит так:
367. В тетраэдре ABCD медиана АА1 грани ABC делится точкой К так, что АК:КА1 =3:7. Разложите вектор DK по векторам DA, DB, DC.
Решение задачи:



367. В тетраэдре ABCD медиана АА1 грани ABC делится точкой К так, что АК:КА1 =3:7. Разложите вектор DK по

по задаче 349:

367. В тетраэдре ABCD медиана АА1 грани ABC делится точкой К так, что АК:КА1 =3:7. Разложите вектор DK по

367. В тетраэдре ABCD медиана АА1 грани ABC делится точкой К так, что АК:КА1 =3:7. Разложите вектор DK по

но

367. В тетраэдре ABCD медиана АА1 грани ABC делится точкой К так, что АК:КА1 =3:7. Разложите вектор DK по

так как а1 — середина вс. поэтому

367. В тетраэдре ABCD медиана АА1 грани ABC делится точкой К так, что АК:КА1 =3:7. Разложите вектор DK по


Задача из главы Векторы в пространстве по предмету Геометрия из задачника Геометрия 10-11 класс, Атанасян (10 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн