Тема: Векторы в пространстве (Сложение и вычитание векторов. Умножение вектора на число §2)
Условие задачи полностью выглядит так:
336. Даны точки A, В, С и D. Представьте вектор АВ в виде алгебраической суммы следующих векторов: а) AC, DC, BD; б) DA, DC, СВ; в) DA, CD, ВС.
Решение задачи:


а) воспользуемся правилом многоугольника сложения векторов

336. Даны точки A, В, С и D. Представьте вектор АВ в виде алгебраической суммы следующих векторов: а) AC, DC, BD; б) DA

это и есть требуемое разложение. б)

336. Даны точки A, В, С и D. Представьте вектор АВ в виде алгебраической суммы следующих векторов: а) AC, DC, BD; б) DA

в)

336. Даны точки A, В, С и D. Представьте вектор АВ в виде алгебраической суммы следующих векторов: а) AC, DC, BD; б) DA


Задача из главы Векторы в пространстве по предмету Геометрия из задачника Геометрия 10-11 класс, Атанасян (10 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн