Тема: Перпендикулярность прямых и плоскостей (Перпендикуляр и наклонные. Угол между прямой и плоскостью §2)
Условие задачи полностью выглядит так:
144. Прямая а параллельна плоскости α. Докажите, что все точки прямой а равноудалены от плоскости α.
Решение задачи:


Решение. Через какую-нибудь точку прямой а проведем плоскость β, параллельную плоскости α (задача 59). Прямая а лежит в плоскости β, так как в противном случае она пересекает плоскость β, а значит, пересекает и плоскость α (задача 55), что невозможно. Все точки плоскости β равноудалены от плоскости α, поэтому и все точки прямой а, лежащей в плоскости β, равноудалены от плоскости α, что и требовалось доказать.

Задача из главы Перпендикулярность прямых и плоскостей по предмету Геометрия из задачника Геометрия 10-11 класс, Атанасян (10 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн