Тема: Смежные и вертикальные углы § 2
Условие задачи полностью выглядит так:
№ 22*. Из вершины О смежных углов АОВ и СОВ проведен луч OD в полуплоскость, где проходит общая сторона углов ОВ. Докажите, что луч OD пересекает либо отрезок АВ, либо отрезок ВС. Какой из отрезков пересекает луч OD, если угол AOD меньше (больше) угла АОВ
Решение задачи:


так как прямая od пересекает сторону ас треугольника авс в точке о, то она пересекает либо сторону ав, либо сторону вс (по теореме 1.1).

№ 22*. Из вершины О смежных углов АОВ и СОВ проведен луч OD в полуплоскость, где проходит общая сторона

т.к. дополнительный луч к лучу od лежит в разных полуплоскостях с отрезками ав и вс, точка пересечения прямой od с одним из этих отрезков лежит на луче od.
если ∠aod больше ∠aob, то луч od будет проходить между сторонами ∠вос и будет пересекать отрезов вс; а в случае, когда угол aod меньше угла аов, луч od будет пересекать отрезок ав.

Задача из главы Смежные и вертикальные углы § 2 по предмету Геометрия из задачника Геометрия. 7-11 класс, Погорелов (7 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн