Задачи по теме Взаимное расположение прямых в пространстве. Угол между двумя прямыми § 2
из учебника Атанасян (глава Параллельность прямых и плоскостей)

34. Точка D не лежит в плоскости треугольника ABC, точки М, N и Р — середины отрезков DA, DB и DC соответственно, точка К лежит на отрезке BN. Выясните взаимное расположение прямых: a) ND и АВ; б) РК и ВС; в) MN и АВ; г) МР и АС; д) KN и AC; е) MD и ВС.
35. Через точку М, не лежащую на прямой а, проведены две прямые, не имеющие общих точек с прямой а. Докажите, что по крайней мере одна из этих прямых и прямая а являются скрещивающимися прямыми.
36. Прямая с пересекает прямую а и не пересекает прямую b, параллельную прямой а. Докажите, что b и с — скрещивающиеся прямые.
37. Прямая m пересекает сторону АВ треугольника ABC. Каково взаимное расположение прямых m и ВС, если: а) прямая m лежит в плоскости ABC и не имеет общих точек с отрезком АС; б) прямая m не лежит в плоскости ABC?
38. Через вершину А ромба ABCD проведена прямая а, параллельная диагонали BD, а через вершину С — прямая b, не лежащая в плоскости ромба. Докажите, что: а) прямые а и CD пересекаются; б) а и b скрещивающиеся прямые.
39. Докажите, что если АВ и CD скрещивающиеся прямые, то AD и ВС также скрещивающиеся прямые.
40. На скрещивающихся прямых а и b отмечены соответственно точки М и N. Через прямую а и точку N проведена плоскость α, а через прямую b и точку М — плоскость β. а) Лежит ли прямая b в плоскости α? б) Пересекаются ли плоскости α и β? При положительном ответе укажите прямую, по которой они пересекаются.
41. Может ли каждая из двух скрещивающихся прямых быть параллельна третьей прямой? Ответ обоснуйте.
42. Даны параллелограмм ABCD и трапеция ABEK с основанием ЕК, не лежащие в одной плоскости, а) Выясните взаимное расположение прямых CD и ЕК. б) Найдите периметр трапеции, если известно, что в нее можно вписать окружность и АВ = 22,5 см, EK = 27,5 см.
43. Докажите, что середины сторон пространственного четырехугольника* являются вершинами параллелограмма.
44. Прямые ОВ и CD параллельные, а ОА и CD — скрещивающиеся прямые. Найдите угол между прямыми ОА и CD, если: а) ∠АОВ = 40°; б) ∠АОВ= 135°; в) ∠АОВ = 90°.
45. Прямая а параллельна стороне ВС параллелограмма ABCD и не лежит в плоскости параллелограмма. Докажите, что а и CD — скрещивающиеся прямые, и найдите угол между ними, если один из углов параллелограмма равен: а) 50°; б) 121°.
46. Прямая m параллельна диагонали BD ромба ABCD и не лежит в плоскости ромба. Докажите, что: a) m и АС — скрещивающиеся прямые — и найдите угол между ними; б) m и AD — скрещивающиеся прямые — и найдите угол между ними, если ∠ABC=128°.
47. В пространственном четырехугольнике ABCD стороны АВ и CD равны. Докажите, что прямые АВ и CD образуют равные углы с прямой, проходящей через середины отрезков ВС и AD.

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн