Задачи по теме Второй и третий признаки равенства треугольников
из учебника Атанасян, Бутузов, Кадомцев, Позняк, Юдина (глава Треугольники)

121 Отрезки АВ и CD пересекаются в середине О отрезка АВ, ∠OAD = ∠OBC. а) Докажите, что ΔСВО=ΔDAO; б) найдите ВС и СО, если CD=26 см, AD= 15 см.
122 На рисунке 53 (с. 31) ∠1 = ∠2, ∠3 = ∠4. а) Докажите, что ΔАВС=ΔCDА; б) найдите АВ и ВС, если AD= 19 см, CD=11 см.
123 На биссектрисе угла А взята точка D, а на сторонах этого угла— точки В и С такие, что ∠ADB=∠ADC. Докажите, что BD=CD.
124 По данным рисунка 73 докажите, что ОР=OT, ∠P=∠T.
125 На рисунке 74 ∠DAC=∠DBC, АО =ВО. Докажите, что ∠C=∠D и AC=BD.
126 На рисунке 74 ∠DAB = ∠CBA, ∠CAB = ∠DBA, AC = 13 см. Найдите BD.
127 В треугольниках ABC и А1В1С1 АВ=А1В1, ВС=В1С1, ∠B =∠B1. На сторонах АВ и A1B1 отмечены точки D и D1 так, что ∠ACD = ∠A1C1D1. Докажите, что ΔBCD = ΔB1C1D1.
128 Докажите, что в равных треугольниках биссектрисы, проведенные к соответственно равным сторонам, равны.
129 Отрезки АС и BD пересекаются в середине О отрезка AC, ∠BCO = ∠DAO. Докажите, что ΔВОА=ΔDОС.
130 В треугольниках ABC и А1В1С1 отрезки СО и С1О1 — медианы, ВС=В1С1, ∠B = ∠B1 и ∠C=∠C1. Докажите, что: а) ΔАСO=ΔА1С1O1; б) ΔВСO=ΔВ1С1O1.
131 В треугольниках DEF и MN PEF=NP, DF=MP и ∠F=∠P. Биссектрисы углов Е и D пересекаются в точке О, а биссектрисы углов М и N в точке К. Докажите, что ∠DOE=∠MKN.
132 Прямая, перпендикулярная к биссектрисе угла А, пересекает стороны угла в точках М и N. Докажите, что треугольник AMN — равнобедренный.
133 Докажите, что если биссектриса треугольника совпадает с его высотой, то треугольник — равнобедренный.
134 Докажите, что равнобедренные треугольники равны, если основание и прилежащий к нему угол одного треугольника соответственно равны основанию и прилежащему к нему углу другого треугольника.
135 Докажите, что если сторона одного равностороннего треугольника равна стороне другого равностороннего треугольника, то треугольники равны.
136 На рисунке 52 (с. 31) АВ =AC, BD = DC и ∠BAC = 50°. Найдите ∠CAD.
137 На рисунке 53 (с. 31) BC=AD, AB = CD. Докажите, что ∠B=∠D.
138 На рисунке 75 AB = CD и BD=AC. Докажите, что: a) ∠CAD=∠ADB; б) ∠BAC=∠CDB.
139 На рисунке 76 АВ = CD, AD = ВС, BE — биссектриса угла ABC, a DF — биссектриса угла ADC. Докажите, что: а) ∠ABE = ∠ADF; б) ΔABE=ΔCDF.
140 В треугольниках ABC и А1B1С1 медианы ВМ и B1М1 равны, АВ =А1B1, АС=А1С1. Докажите, что ΔABC =ΔA1B1C1.
141 В треугольниках ABC и А1В1С1 отрезки AD и A1D1 — биссектрисы, АВ=А1В1, BD = B1D1 и AD=A1D1. Докажите, что ΔABC=ΔA1B1C1 .
142 Равнобедренные треугольники ADC и BCD имеют общее основание DC. Прямая АВ пересекает отрезок CD в точке О. Докажите, что: а) ∠ADB=∠ACB; б) DO = ОС.

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн