Задачи по теме Тетраэдр и параллелепипед § 4
из учебника Атанасян (глава Параллельность прямых и плоскостей)

66. Назовите все пары скрещивающихся (т.е: принадлежащих скрещивающимся прямым) ребер тетраэдра ABCD. Сколько таких пар ребер имеет тетраэдр?
67. В тетраэдре DABC дано: ∠ADB = 54°, ∠BDC = 72°, ∠CDA =90°, DA=20 см, BD = 18 см, DC = 21 см. Найдите: а) ребра основания ABC данного тетраэдра; б) площади всех боковых граней.
68. Точки М и N — середины ребер АВ и АС тетраэдра ABCD. Докажите, что прямая MN параллельна плоскости BCD.
69. Через середины ребер АВ и ВС тетраэдра SABC проведена плоскость параллельно ребру SB. Докажите, что эта плоскость пересекает грани SAB и SBC по параллельным прямым.
70. Докажите, что плоскость, проходящая через середины ребер АВ, АС и AD тетраэдра ABCD, параллельна плоскости BCD.
71. Изобразите тетраэдр DABC и на ребрах DB, DC и ВС отметьте соответственно точки М, N и К. Постройте точку пересечения: а) прямой MN и плоскости АВС; б) прямой KN и плоскости ABD.
72. Изобразите тетраэдр DABC и постройте сечение этого тетраэдра плоскостью, проходящей через точку М параллельно плоскости грани ABC, если: а) точка М является серединой ребра AD; б) точка М лежит внутри грани ABD.
73. В тетраэдре ABCD точки М, N и Р являются серединами ребер АВ, ВС и CD, АС=10 см, BD= 12 см. Докажите, что плоскость MNP проходит через середину К ребра AD, и найдите периметр четырехугольника, полученного при пересечении тетраэдра плоскостью MNP.
74. Через точку пересечения медиан грани BCD тетраэдра ABCD проведена плоскость, параллельная грани ABC. а) Докажите, что сечение тетраэдра этой плоскостью есть треугольник, подобный треугольнику ABC. б) Найдите отношение площадей сечения и треугольника ABC.
75. Изобразите тетраэдр KLMN. а) Постройте сечение этого тетраэдра плоскостью, проходящей через ребро KL и середину А ребра MN. б) Докажите, что плоскость, проходящая через середины Е, О и F отрезков LM, МА и МК, параллельна плоскости LKA. Найдите площадь треугольника EOF, если площадь треугольника LKA равна 24 см2.
76. Дан параллелепипед ABCDA1B1C1D1. Докажите, что AC||A1C1 и BD||B1D1.
77. Сумма всех ребер параллелепипеда ABCDA1B1C1D1. равна 120 см. Найдите каждое ребро параллелепипеда, если известно, что AB/BC=4/5, BC/BB1=5/6.
78. На рисунке 42 изображен параллелепипед ABCDA1B1C1D1, на ребрах которого отмечены точки М, N, М1 и N1 так, что AM = CN=A1M1 = C1N1. Докажите, что MBNDM1B1N1D1 — параллелепипед.
79. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение: а) плоскостью АВС1; б) плоскостью АСС1. Докажите, что построенные сечения являются параллелограммами.
80. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечения плоскостями АВС1 и DCB1, а также отрезок, по которому эти сечения пересекаются.
81. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте точки М и N соответственно на ребрах BB1 и CC1. Постройте точку пересечения: а) прямой MN с плоскостью ABC; б) прямой AM с плоскостью A1B1C1.
82. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте внутреннюю точку М грани АА1В1В. Постройте сечение параллелепипеда, проходящее через точку М параллельно: а) плоскости основания ABCD; б) грани ВВ1С1С; в) плоскости BDD1.
83. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через: а) ребро СС1 и точку пересечения диагоналей грани AA1D1D; б) точку пересечения диагоналей грани ABCD параллельно плоскости АВ1С1.
84. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через точки В1, D1 и середину ребра CD. Докажите, что построенное сечение — трапеция.
85. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью BKL, где К — середина ребра АА1, a L — середина ребра СС1. Докажите, что построенное сечение— параллелограмм.
86. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через диагональ АС основания параллельно диагонали BD1. Докажите, что если основание параллелепипеда — ромб и углы АВВ1 и СВВ1 прямые, то построенное сечение — равнобедренный треугольник.
87. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью MNK, где точки М, N и К лежат соответственно на ребрах: а) ВВ1, АА1, AD1 б) СС1, AD, ВВ1.

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн