Задачи по теме К главе 5. Четырехугольники
из учебника Атанасян, Бутузов, Кадомцев, Позняк, Юдина (глава Задачи повышенной трудности)

811 Дан выпуклый шестиугольник А1А2А3А4А5А6, все углы которого равны. Докажите, что А1А24А55А6-A2A3=A3A4 -A6A1.
812 Положительные числа a1, а2, а3, а4, а5 и а6 удовлетворяют условиям а1- а45- а2 = a3 - a6.Докажите, что существует выпуклый шестиугольник А1А2А3А4А5А6, все углы которого равны, причем А1А212А3=a2, A3A4=a3, А4A54, А5А65 и А6A16.
813 Докажите, что из одинаковых плиток, имеющих форму произвольного выпуклого четырехугольника, можно сделать паркет, полностью покрывающий любую часть плоскости.
814 Докажите, что диагонали выпуклого четырехугольника пересекаются.
815 Докажите, что в любом четырехугольнике какие-то две противоположные вершины лежат по разные стороны от прямой, проходящей через две другие вершины.
816 В равнобедренном треугольнике ABC с основанием АС проведена биссектриса AD. Прямая, проведенная через точку D перпендикулярно к AD, пересекает прямую АС в точке Е. Точки М и К — основания перпендикуляров, проведенных из точек В и D к прямой АС. Найдите МК, если АЕ = а.
817 Докажите, что в треугольнике сумма трех медиан меньше периметра, но больше половины периметра.
818 Диагонали выпуклого четырехугольника разбивают его на четыре треугольника, периметры которых равны. Докажите, что этот четырехугольник — ромб.
819 Найдите множество середин всех отрезков, соединяющих данную точку со всеми точками данной прямой, не проходящей через эту точку.
820 Докажите, что прямая, проходящая через середины оснований равнобедренной трапеции, перпендикулярна к основаниям. Сформулируйте и докажите обратное утверждение.
821 При пересечении биссектрис всех углов прямоугольника образовался четырехугольник. Докажите, что этот четырехугольник — квадрат.
822 На сторонах параллелограмма вне его построены квадраты. Докажите, что точки пересечения диагоналей этих квадратов являются вершинами квадрата.
823 На стороне CD квадрата ABCD отмечена точка М. Биссектриса угла ВАМ пересекает сторону ВС в точке К. Докажите, что AM = ВК + DM.
824 На рисунке 268 изображены три квадрата. Найдите сумму ∠BAE +∠CAE +∠DAE.
825 Внутри квадрата ABCD взята точка М, такая, что ∠MAB = 60°, ∠MCD= 15°. Найдите ∠MBC.
826 На сторонах треугольника ABC во внешнюю сторону построены квадраты BCDE, АСТМ, BAHK, а затем параллелограммы TCDQ и ЕВКР. Докажите, что треугольник APQ прямоугольный и равнобедренный.
827 Постройте равнобедренную трапецию по основаниям и диагоналям.
828 Докажите, что если треугольник имеет: а) ось симметрии, то он равнобедренный; б) более чем одну ось симметрии, то он равносторонний.

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн