Задачи по теме Дополнительные задачи к главе 1
из учебника Атанасян (глава Параллельность прямых и плоскостей)

88. Параллельные прямые АС и BD пересекают плоскость α соответственно в точках А и В. Точки С и D лежат по одну сторону от плоскости α, AС = 8 см, BD = 6 см, АВ = 4 см. а) Докажите, что прямая CD пересекает плоскость α в некоторой точке Е. б) Найдите отрезок BE.
89. Точки А, В, С и D не лежат в одной плоскости. Медианы треугольников ABC и CBD пересекаются соответственно в точках M1 и М2. Докажите, что отрезки AD и М1М2 параллельны.
90. Вершины А и В трапеции ABCD лежат в плоскости α, а вершины С и D не лежат в этой плоскости. Как расположена прямая CD относительно плоскости α, если отрезок АВ является: а) основанием трапеции; б) боковой стороной трапеции?
91. Через каждую из двух параллельных прямых a и b и точку М, не лежащую в плоскости этих прямых, проведена плоскость. Докажите, что эти плоскости пересекаются по прямой, параллельной прямым a и b.
92. Плоскость α и прямая a параллельны прямой b. Докажите, что прямая a либо параллельна плоскости α, либо лежит в ней.
93. Прямые а и b параллельны. Через точку М прямой a проведена прямая MN, отличная от прямой а и не пересекающая прямую b. Каково взаимное расположение прямых MN и b?
94. Даны две скрещивающиеся прямые и точка В, не лежащая на этих прямых. Пересекаются ли плоскости, каждая из которых проходит через одну из прямых и точку В? Ответ обоснуйте.
95. Прямая а параллельна плоскости α. Докажите, что если плоскость β пересекает прямую а, то она пересекает и плоскость α.
96. Докажите, что отрезки параллельных прямых, заключенные между плоскостью и параллельной ей прямой, равны.
97. Докажите, что два угла с соответственно параллельными сторонами либо равны, либо их сумма равна 180°.
98. Прямая а параллельна плоскости α. Существует ли плоскость, проходящая через прямую а и параллельная плоскости α? Если существует, то сколько таких плоскостей? Ответ обоснуйте.
99. Докажите, что три параллельные плоскости отсекают на любых двух пересекающих эти плоскости прямых пропорциональные отрезки.
100. Даны две скрещивающиеся прямые и точка А. Докажите, что через точку А проходит, и притом только одна, плоскость, которая либо параллельна данным прямым, либо проходит через одну из них и параллельна другой.
101. Докажите, что отрезки, соединяющие середины противоположных ребер тетраэдра, пересекаются и точкой пересечения делятся пополам.
102. Докажите, что плоскость α, проходящая через середины двух ребер основания тетраэдра и вершину, не принадлежащую основанию, параллельна третьему ребру основания. Найдите периметр и площадь сечения тетраэдра плоскостью α, если длины всех ребер тетраэдра равны 20 см.
103. На ребрах DA, DB и DC тетраэдра DABC отмечены точки М, N и Р так, что DM:MA = DN:NB = DP:PC. Докажите, что плоскости MNP и ABC параллельны. Найдите площадь треугольника MNP, если площадь треугольника ABC равна 10 см2 и DM: МА = 2:1.
104. Изобразите тетраэдр ABCD и отметьте точку М на ребре АВ. Постройте сечение тетраэдра плоскостью, проходящей через точку М параллельно прямым АС и BD.
105. Изобразите тетраэдр DABС и отметьте точки М и N на ребрах BD и CD и внутреннюю точку К грани ABC. Постройте сечение тетраэдра плоскостью MNK.
106. Изобразите тетраэдр DABС, отметьте точку К на ребре DC и точки М и N граней ABC и ACD. Постройте сечение тетраэдра плоскостью MNK.
107. Изобразите тетраэдр ABCD и отметьте точку М на ребре АВ. Постройте сечение тетраэдра плоскостью, проходящей через точку М параллельно грани BDC.
108*. В тетраэдре DABC биссектрисы трех углов при вершине D пересекают отрезки ВС, СА и АВ соответственно в точках А1, В1 и C1. Докажите, что отрезки АА1, ВВ1 и CC1 пересекаются в одной точке.
109. Две плоскости, каждая из которых содержит два боковых ребра параллелепипеда, не принадлежащих одной грани, пересекаются по прямой а. Докажите, что прямая а параллельна боковым ребрам параллелепипеда и пересекает все его диагонали.
110. Докажите, что в параллелепипеде ABCDA1B1C1D1 плоскость A1DB параллельна плоскости D1CB1.
111. Докажите, что диагональ параллелепипеда меньше суммы трех ребер, имеющих общую вершину.
112. Докажите, что сумма квадратов четырех диагоналей параллелепипеда равна сумме квадратов двенадцати его ребер.
113. По какой прямой пересекаются плоскости сечений A1BCD1 и BDD1B1 параллелепипеда ABCDA1B1C1D1?
114. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте на ребре АВ точку М. Постройте сечение параллелепипеда плоскостью, проходящей через точку М параллельно плоскости АСС1.
115. Точка М лежит на ребре ВС параллелепипеда ABCDA1B1C1D1. Постройте сечение этого параллелепипеда плоскостью, проходящей через точку М параллельно плоскости BDC1.

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн