Задачи по теме Дополнительные задачи
из учебника Атанасян, Бутузов, Кадомцев, Позняк, Юдина (глава Длина окружности и площадь круга)

1129 Сколько сторон имеет правильный многоугольник, один из внешних углов которого равен: а) 18°; б) 40°; в) 72°; г) 60°?
1130 На стороне правильного треугольника, вписанного в окружность радиуса 3 дм, построен квадрат. Найдите радиус окружности, описанной около квадрата.
1131 Найдите периметр правильного шестиугольника A1A2A3A4A5A6, если A1A4 =2,24 см.
1132 Найдите отношение периметров правильного треугольника и квадрата: а) вписанных в одну и ту же окружность; б) описанных около одной и той же окружности.
1133 Диагонали А1А6 и А2А9 правильного двенадцатиугольника пересекаются в точке В (рис. 318). Докажите, что: а) треугольники А1А2В и А6А9В равносторонние; б) А1А6 = 2 r, где r — радиус вписанной в двенадцатиугольник окружности.
1134 Диагонали А1А4 и А2А7 правильного десятиугольника A1A2...A10, вписанного в окружность радиуса R, пересекаются в точке В (рис. 319). Докажите, что: а) А2А7 = 2R; б) А1А2В и ВА4O — подобные равнобедренные треугольники; в) А1А41А2 = R.
1135 В круг, площадь которого равна 36π см2, вписан правильный шестиугольник. Найдите сторону этого шестиугольника и его площадь.
1136 Квадрат А1А2А3А4 вписан в окружность радиуса R (рис. 320). На его сторонах отмечены восемь точек так, что A1B1=A2B2=A3B3=A4B4=A1C1=A2C2= A3C3 = A4C4= R. Докажите, что восьмиугольник B1C3B2C4B3C1B4C2 правильный, и выразите площадь этого восьмиугольника через радиус R.
1137 За два оборота по круговой орбите вокруг Земли космический корабль проделал путь 84 152 км. На какой высоте над поверхностью Земли находится корабль, если радиус Земли равен 6370 км?
1138 Найдите длину окружности, вписанной в ромб, если: а) диагонали ромба равны 6 см и 8 см; б) сторона ромба равна а и острый угол равен α.
1139 Лесной участок имеет форму круга. Чтобы обойти этот участок по опушке, идя со скоростью 4 км/ч, нужно затратить на 45 мин больше, чем для того, чтобы пересечь его по диаметру. Найдите длину опушки данного участка.
1140 В правильный многоугольник вписана окружность. Докажите, что отношение площади круга, ограниченного этой окружностью, к площади многоугольника равно отношению длины окружности к периметру многоугольника.
1141 Фигура ограничена большими дугами двух окружно-стей, опирающимися на общую хорду, длина которой равна 6 см. Для одной окружности эта хорда является стороной вписанного квадрата, для другой — стороной правильного вписанного шестиугольника. Найдите сумму длин этих дуг.
1142 Основания трапеции, около которой можно описать окружность, равны 4 см и 14 см, а одна из боковых сторон равна 13 см. Найдите длину описанной окружности.
1143 Высота прямоугольного треугольника, проведенная к гипотенузе, разделяет треугольник на два подобных треугольника (см. задачу 2, п. 63). Докажите, что отношение длин окружностей, вписанных в эти треугольники, равно коэффициенту подобия этих треугольников.

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн