Задачи по теме Дополнительные задачи
из учебника Атанасян, Бутузов, Кадомцев, Позняк, Юдина (глава Четырехугольники)

424 Докажите, что если не все углы выпуклого четырехугольника равны друг другу, то хотя бы один из них тупой.
425 Периметр параллелограмма ABCD равен 46 см, АВ=14см. Какую сторону параллелограмма пересекает биссектриса угла А? Найдите отрезки, которые образуются при этом пересечении.
426 Стороны параллелограмма равны 10 см и 3 см. Биссектрисы двух углов, прилежащих к большей стороне, делят противоположную сторону на три отрезка. Найдите эти отрезки.
427 Через произвольную точку основания равнобедренного треугольника проведены прямые, параллельные боковым сторонам треугольника. Докажите, что периметр получившегося четырехугольника равен сумме боковых сторон данного треугольника.
428 В параллелограмме, смежные стороны которого не равны, проведены биссектрисы углов. Докажите, что при их пересечении образуется прямоугольник.
429 Докажите, что выпуклый четырехугольник является параллелограммом, если сумма углов, прилежащих к каждой из двух смежных сторон, равна 180°.
430 Докажите, что выпуклый четырехугольник является параллелограммом, если его противоположные углы попарно равны.
431 Точка К— середина медианы AM треугольника ABC. Прямая ВК пересекает сторону АС в точке D. Докажите, что AD= ⅓ АС.
432 Точки М и N — середины сторон AD и ВС параллелограмма ABCD. Докажите, что прямые AN и МС делят диагональ BD на три равные части.
433 Из вершины В ромба ABCD проведены перпендикуляры ВК и ВМ к прямым AD и DC. Докажите, что луч BD является биссектрисой угла КВМ.
434 Докажите, что точка пересечения диагоналей ромба равноудалена от его сторон.
435 Докажите, что середина отрезка, соединяющего вершину треугольника с любой точкой противоположной стороны, лежит на отрезке с концами в серединах двух других сторон.
436 Диагональ АС квадрата ABCD равна 18,4 см. Прямая, проходящая через точку А и перпендикулярная к прямой АС, пересекает прямые ВС и CD соответственно в точках М и N. Найдите MN.
437 На диагонали АС квадрата ABCD взята точка М так, что AM =АВ. Через точку М проведена прямая, перпендикулярная к прямой АС и пересекающая ВС в точке Н. Докажите, что ВН=НМ=МС.
438 В трапеции ABCD с большим основанием AD диагональ АС перпендикулярна к боковой стороне CD, ∠BAC = ∠CAD. Найдите AD, если периметр трапеции равен 20 см, a ∠D=60°.
439* Сумма углов при одном из оснований трапеции равна 90°. Докажите, что отрезок, соединяющий середины оснований трапеции, равен их полуразности.
440* На двух сторонах треугольника вне его построены квадраты. Докажите, что отрезок, соединяющий концы сторон квадратов, выходящих из одной вершины треугольника, в два раза больше медианы треугольника, выходящей из той же вершины.
441 Докажите, что прямые, содержащие диагонали ромба, являются его осями симметрии.
442 Докажите, что точка пересечения диагоналей параллелограмма является его центром симметрии.
443 Сколько центров симметрии имеет пара параллельных прямых?
444* Докажите, что если фигура имеет две взаимно перпендикулярные оси симметрии, то точка их пересечения является центром симметрии фигуры.

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн