Задачи на тему Метод координат в пространстве
из задачника Атанасян 10 класс по предмету Геометрия

Название темы: Координаты точки и координаты вектора §1
400. Даны точки A (3; — 1; 0), В (0; 0; — 7), С (2; 0; 0), D ( — 4; 0; 3), E (0; — 1; 0), F(1;2;3), G (0; 5; -7), Н (-√5; √3; 0). Какие из этих точек лежат на: а) оси абсцисс; б) оси ординат; в) оси аппликат; г) плоскости Оху, д) плоскости Oyz; е) плоскости Oxz?
401. Найдите координаты проекций точек А(2; —3; 5), В (3; —5; ½) и C( — √3; —√2/2; √5-√3) на: а) координатные плоскости Oxz, Оху и Oyz; б) оси координат Ох, Оу и Oz.
402. Даны координаты четырех вершин куба ABCDA1B1C1D1: А (0; 0; 0), В (0; 0; 1), D (0; 1; 0) и А1 (1; 0; 0). Найдите координаты остальных вершин куба.
403. Запишите координаты векторов: a = 3i+2j—5k, b=—5i + 3k — k, c=i — j, d = j+k, m = k—i, n = 0,7k.
404. Даны векторы а {5; —1; 2}, b{-3; -1; 0}, c{0; -1; 0}, d (0; 0; 0). Запишите разложения этих векторов по координатным векторам i, j, k.
405. На рисунке 124 изображен прямоугольный параллелепипед, у которого ОА= 4, ОВ = 6, ОО1=5. Найдите координаты векторов ОА1, ОВ1, OO1, ОС, ОС1, ВС1, АС1, O1С в системе координат Oxyz.
406. Докажите, что каждая координата суммы (разности) двух векторов равна сумме (разности) соответствующих координат этих векторов.
407. Даны векторы а {3; —5; 2}, b{0; 7; —1}, с {⅔; 0; 0;} и d{ — 2,7; 3,1; 0,5}. Найдите координаты векторов: а) а+b; б) а + с; в) b+с; г) d+b; д) d + a; е) а+b+с; ж) b + а + d; з) а+b+c+d.
408. По данным рисунка 125 найдите координаты векторов АС, СВ, АВ, MN, NP, ВМ, ОМ, ОР, если ОА= 3, ОВ=7, ОС = 2, а М, N и Р — середины ребер АС, ОС и СВ.
409. Даны векторы а{5; —1; 1}, b { — 2; 1; 0}, с {0; 0,2; 0} и d {-⅓;2⅖; -1/7}. Найдите координаты векторов: а) а — b; б) b — а; в) а — с; г) d — а; д) с — d; е) а — b+с; ж) а — b — с; з) 2а; и) —3b; к) —6с; л) —⅓d; м) 0,2b.
410. Даны векторы a {— 1; 2; 0}, b{0; —5; —2} и с {2; 1; —3}. Найдите координаты векторов p=3b-2a+c и q=3c-2b+a.
411. Даны векторы а{ — 1; 1; 1}, b{0; 2; —2}, с { — 3; 2; 0} и d{ — 2; 1; —2}. Найдите координаты векторов: а) За + 2b —с; б) —а + 2с —d; в) 0,1а+ 3b +0,7с— 5d; г) (2а + 3b) — (а — 2b) + 2 (а-b).
412. Найдите координаты векторов, противоположных следующим векторам: i, j, k, а {2; 0; 0}, b { — 3; 5; —7), с { — 0,3; 0; 1,75}.
413. Коллинеарны ли векторы: а) а{3; 6; 8} и b{6; 12; 16); б) с{1; — 1; 3} и d {2; 3; 15}; в) i{1; 0; 0} и j{0; 1; 0}; г) m {0; 0; 0} и n {5; 7; -3}; д) p {⅓ -1; 5} и q {-1; -3; -15}?
414. Найдите значения m и n, при которых следующие векторы коллинеарны: а) а {15; m; 1} и b(18; 12; n); б) с {m; 0,4; —1} и d{-½;n;5}.
416. Даны векторы ОА{3; 2; 1}, OB {1; -3; 5} и OC{ -⅓0,75; -2¾}. Запишите координаты точек А, В и С, если точка О — начало координат.
417. Даны точки А (2; —3; 0), В (7; — 12; 18) и С ( — 8; 0; 5). Запишите координаты векторов ОА, ОВ и ОС, если точка О — начало координат.
418. Найдите координаты вектора АВ, если: а) A (3; —1; 2), В(2; — 1; 4); б) A (-2; 6; -2), В(3; - 1; 0); в) A (1; ⅚; ½), B(½⅓¼).
419. Вершины треугольника ABC имеют координаты: A (1; 6; 2), В (2; 3; — 1), С ( — 3; 4; 5). Разложите векторы АВ, ВС и СА по координатным векторам i, j и k.
420. Даны точки A (3; -1; 5), В (2; 3; -4), С(7; 0; -1) и D (8; —4; 8). Докажите, что векторы АВ и DC равны. Равны ли векторы ВС и AD?
421. Лежат ли точки A, В и С на одной прямой, если: а) А (3; -7; 8), В (-5; 4; 1), С (27; -40; 29); б) A (-5; 7; 12), В (4; -8; 3), С (13; -23; -6); в) A (-4; 8; -2), В ( - 3; -1; 7), С (-2; -10; -16)?
422. Лежат ли точки A, В, С и D в одной плоскости, если: а) А (-2; -13; 3), В(1; 4; 1), С (- 1; - 1; -4), D (0; 0; 0); б) А (0; 1; 0), В (3; 4; -1), С (-2; -3; 0), D (2; 0; 3); в) A (5; -1; 0), В (-2; 7; 1), С (12; -15; -7), D(1; 1; -2)?
423. Докажите, что точка пересечения медиан треугольника ABC с вершинами A (x1; y1; z1), В (x2; y2; z2), С (x3; y3; z3) имеет координаты
424. Точка М — середина отрезка АВ. Найдите координаты: а) точки М, если А (0; 3; —4), В ( — 2; 2; 0); б) точки В, если A (14; —8; 5), М (3; —2; —7); в) точки A, если B(0; 0; 2), М (— 12; 4; 15).
425. Середина отрезка АВ лежит на оси Ох. Найдите m и n, если: а) A ( — 3; m; 5), В (2; —2; n); б) А (1; 0,5; —4), В (1; m; 2n); в) A (0; m; n+1), В(1; n;-m+1); г) A (7; 2m+n; —n), В ( - 5; -3; m -3).
426. Найдите длину вектора АВ, если: а) A (— 1; 0; 2), В (1; — 2; 3); б) A (-35; -17; 20), В (-34; -5; 8).
427. Найдите длины векторов: а {5; —1; 7}, b {2 √3; —6; 1}, c = i+j+k, d=—2k, m = i — 2j.
428. Даны векторы а {3; —2; 1), b { — 2; 3; 1} и с { —3; 2; 1}. Найдите: а) |а + b|; б) |а| + |b|; в) |а| — |b|; г) |а — b|; д) |3с|; е) √14|c|; ж) |2а —Зс|.
429. Даны точки М ( — 4; 7; 0) и N (0; — 1; 2). Найдите расстояние от начала координат до середины отрезка MN.
430. Даны точки A (3/2; 1; — 2 ), В (2; 2; —3) и С (2; 0; — 1). Найдите: а) периметр треугольника АВС; б) медианы треугольника ABC.
431. Определите вид треугольника ABC, если: а) A (9; 3; —5), В (2; 10; -5), С (2; 3; 2); б) A (3; 7; -4), В (5; -3; 2), С (1; 3; — 10); в) A (5; -5; -1),В(5; -3; -1), С (4; -3;0); г) A (-5; 2; 0), В ( — 4; 3; 0), С (-5; 2; -2).
432. Найдите расстояние от точки A ( — 3; 4; —4) до: а) координатных плоскостей; б) осей координат.
433. На каждой из координатных плоскостей найдите такую точку, расстояние от которой до точки A ( — 1; 2; —3) является наименьшим среди всех расстояний от точек этой координатной плоскости до точки A.
434. На каждой из осей координат найдите такую точку, расстояние от которой до точки В (3; —4; √7) является наименьшим среди всех расстояний от точек этой оси до точки В.
435. Даны точки A (1; 0; k), В (— 1; 2; 3) и С (0; 0; 1). При каких значениях k треугольник ABC является равнобедренным?
436. Даны точки A (4; 4; 0), В (0; 0; 0), С (0; 3; 4) и D (1; 4; 4). Докажите, что ABCD — равнобедренная трапеция.
437. Найдите точку, равноудаленную от точек А (— 2; 3; 5) и В(3; 2; —3) и расположенную на оси: а) Ох; б) Оу; в) Oz.
438. Даны точки А (— 1; 2; 3), В ( — 2; 1; 2) и С (0; — 1; 1). Найдите точку, равноудаленную от этих точек и расположенную на координатной плоскости: а) Оху; б) Oyz; в) Ozx.
439. Даны точки О (0; 0; 0), А (4; 0; 0), В (0; 6; 0), С (0; 0; —2). Найдите: а) координаты центра и радиус окружности, описанной около треугольника АОВ; б) координаты точки, равноудаленной от вершин тетраэдра OABC.
440. Отрезок CD длины т перпендикулярен к плоскости прямоугольного треугольника ABC с катетами АС = b и ВС = a. Введите подходящую систему координат и с помощью формулы расстояния между двумя точками найдите расстояние от точки D до середины гипотенузы этого треугольника.
Название темы: Скалярное произведение векторов §2
441. Дан куб ABCDA1B1C1D1. Найдите угол между векторами: а) В1В и В1С; б) DA и B1D1; в) А1С1 и А1В; г) ВС и АС; д) ВВ1 и АС; е) В1С и AD1; ж) A1D1 и ВС; з) АА1 и С1С.
442. Угол между векторами АВ и CD равен φ. Найдите углы BA^DC, BA^CD, АВ^DC.
443. Ребро куба ABCDA1B1C1D1 равно а, точка O1 — центр грани A1B1C1D1. Вычислите скалярное произведение векторов: а) AD и В1С1; б) АС и С1А1; в) D1B и АС; г) ВА1 и ВС1; д) A1O1 и А1С1; е) D1O1 и В1O1; ж) ВО1 и С1В.
444. Даны векторы а {1; —1; 2),b{—1; 1; 1} и с {5; 6; 2}. Вычислите ас, ab, bc, aa, √bb.
445. Даны векторы а = 3i — 5j + k и b=j — 5k. Вычислите: a) аb; б) ai; в) bj; г) (a + b)k; д) (а — 2b) (k + i— 2j).
446. Даны векторы а {3; —1; 1}, b{—5; 1;0} и c{— 1; —2; 1}. Выясните, какой угол (острый, прямой или тупой) между векторами: а) а и b; б) b и c; в) a и c.
447. Дан вектор а {3: —5; 0}. Докажите, что: a) a^i<90°; б) а^j>90°; в) a^k = 90°.
448. Даны векторы а {— 1; 2; 3} и b {5, х; — 1} При каком значении х выполняется условие: a) ab = 3; б) cb= — 1; в) a⊥b?
449. Даны векторы a=mi+3j+4k и b=4i+mj-7k. При каком значении m векторы а и b перпендикулярны?
450. Даны точки А (0; 1; 2), В (√2; 1; 2), С (√2; 2; 1) и D (0; 2; 1). Докажите, что ABCD — квадрат.
451. Вычислите угол между векторами: а) а{2; —2; 0} и b {3; 0; -3}; 6) а {√2; √2; 2} и b {-3; -3; 0}; в) a{0; 5; 0} и b{0; — √З; 1); г) а {—2,5; 2,5; 0} и b (-5; 5; 5 √2}; д) а{ — √2; — √2; —2} и b{√2/2 ;√2/2; — 1}.
452. Вычислите углы между вектором а {2; 1; 2} и координатными векторами.
453. Даны точки А (1; 3; 0), В (2; 3; — 1) и С (1; 2; — 1). Вычислите угол между векторами СА и СВ.
454. Найдите углы, периметр и площадь треугольника, вершинами которого являются точки A(1; -1; 3;), В (3; -1; 1) и С(- 1; 1; 3).
455. Дан куб ABCDA1B1C1D1. Вычислите косинус угла между векторами: а) АА1 и AC1; б) BD1 и DB1; в) DB и АС1.
456. Дан прямоугольный параллелепипед ABCDA1B1C1D1, в котором АВ = 1, ВС = СС1 = 2. Вычислите угол между векторами DB1 и BC1.
457. Известно, что а^с = b^с = 60°, |а| = 1, |b| = |с| = 2. Вычислите (а + b) с.
458. Докажите справедливость равенства (a + b + с) d = ad + bd + cd.
459. Векторы а и b перпендикулярны к вектору с, ab= 120°, |а| = |b| = |с| = 1. Вычислите: а) скалярные произведения (а+b+с) (2b) и (а — b+с)(а — с); б) |а — b| и |a+b-c|.
460. Докажите, что координаты ненулевого вектора в прямоугольной системе координат равны {|a|cosφ1; |a|cosφ2; |a|cosφ3}, где φ1=a^i, φ2=a^j, φ3=a^k.
461. Все ребра тетраэдра ABCD равны друг другу. Точки М и N — середины ребер AD и ВС. Докажите, что MN AD = MN ВС = 0.
462. В параллелепипеде ABCDA1B1C1D1 AA1=AB = AD=1, ∠DAB = 60°, ∠A1AD=∠A1AB = 90°. Вычислите: a) BA⋅D1C1; б) BC1⋅D1B; в) AC1⋅AC1; г) |DB1|; д) |A1C|; e) cos (DA1^D1B); ж) cos (AC1^DB1).
463. В тетраэдре ABCD противоположные ребра AD и ВС, а также BD и АС перпендикулярны. Докажите, что противоположные ребра CD и АВ также перпендикулярны.
464. Вычислите угол между прямыми А В и CD, если: а) А (3; -2; 4), В (4; -1; 2), С (6; -3; 2), D (7; -3; 1); б) A (5; -8; -1), В (6; -8; -2), С (7; -5; -11), D (7; -7; -9); в) A(1; 0; 2), В (2; 1; 0), С (0; -2; -4), D ( - 2; -4; 0); г) А (-6; -15; 7), В (-7; -15; 8), С (14; -10; 9), D(14; -10; 7).
465. Дана правильная треугольная призма АВСA1B1C1, в которой АА1=√2АВ (рис. 132,а). Найдите угол между прямыми АС1 и А1В.
466. В кубе ABCDA1B1C1D1 точка М лежит на ребре АА1, причем АМ:МА1=3:1, а точка N— середина ребра ВС. Вычислите косинус угла между прямыми: a) MN и DD1; б) MN и BD; в) MN и B1D; г) MN и А1С.
467. В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ = ВС=½АА1. Найдите угол между прямыми: a) BD и CD1; б) АС и АС1
468. В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ = 1, ВС=2, BB1=3. Вычислите косинус угла между прямыми: а) АС и D1B; б) AB1 и ВС1; в) A1D и АС1.
469. В кубе ABCDA1B1C1D1 диагонали грани ABCD пересекаются в точке N, а точка М лежит на ребре A1D1, причем A1M:MD1 = 1:4. Вычислите синус угла между прямой MN и плоскостью грани: a) ABCD; б) DD1C1C; в) AA1D1D.
470. В тетраэдре ABCD ∠ABD= ∠ABC= ∠DBC = 90°, АВ = BD = 2, ВС= 1. Вычислите синус угла между прямой, проходящей через середины ребер AD и ВС, и плоскостью грани: a) ABD; б) DBC; в) ABC.
471. Докажите, что угол между скрещивающимися прямыми, одна из которых содержит диагональ куба, а другая — диагональ грани куба, равен 90°.
472. Дан куб MNPQM1N1P1Q1. Докажите, что прямая РМ1 перпендикулярна к плоскостям MN1Q1 и QNP1.
473. Лучи ОА, ОВ и ОС образуют три прямых угла АОВ, АОС и ВОС. Найдите угол между биссектрисами углов СОА и АОВ.
474. В прямоугольном параллелепипеде ABCDA1B1C1D1 ∠BAC1 = ∠DAC1=60°. Найдите φ= ∠A1AC1.
475. В тетраэдре DABC DA = 5 см, АВ = 4 см, АС = 3 см, ∠BAC = 90°, ∠DAB= 60°, ∠DAC = 45°. Найдите расстояние от вершины А до точки пересечения медиан треугольника DBC.
476. Угол между диагональю АС1 прямоугольного параллелепипеда ABCDA1B1C1D1 и каждым из ребер АВ и AD равен 60°. Найдите ∠САС1.
477. Проекция точки К на плоскость квадрата ABCD совпадает с центром этого квадрата. Докажите, что угол между прямыми АК и BD равен 90°.
Название темы: Движения §3
478. Найдите координаты точек, в которые переходят точки А(0; 1; 2), В (3; — 1; 4), С(1; 0; —2) при: а) центральной симметрии относительно начала координат; б) осевой симметрии относительно координатных осей; в) зеркальной симметрии относительно координатных плоскостей.
479. Докажите, что при центральной симметрии: а) прямая, не проходящая через центр симметрии, отображается на параллельную ей прямую; б) прямая, проходящая через центр симметрии, отображается на себя.
480. Докажите, что при центральной симметрии: а) плоскость, не проходящая через центр симметрии, отображается на параллельную ей плоскость; б) плоскость, проходящая через центр симметрии, отображается на себя.
481. Докажите, что при осевой симметрии: а) прямая, параллельная оси, отображается на прямую, параллельную оси; б) прямая, образующая с осью угол φ, отображается на прямую, также образующую с осью угол φ.
482. При зеркальной симметрии прямая a отображается на прямую а1. Докажите, что прямые a и a1 лежат в одной плоскости.
483. При зеркальной симметрии относительно плоскости α плоскость β отображается на плоскость β1. Докажите, что если: а) β||α, то β1||α; б) β⊥α, то β1 совпадает с β.
484. Докажите, что при параллельном переносе на вектор р, где р≠0: а) прямая, не параллельная вектору р и не содержащая этот вектор, отображается на параллельную ей прямую; б) прямая, параллельная вектору р или содержащая этот вектор, отображается на себя.
485. Треугольник A1B1C1 получен параллельным переносом треугольника ABC на вектор р. Точки M1 и М — соответственно точки пересечения медиан треугольников A1B1C1 и ABC. Докажите, что при параллельном переносе на вектор р точка М переходит в точку М1.
486. Докажите, что при движении: а) прямая отображается на прямую; б) плоскость отображается на плоскость.
487. Докажите, что при движении: а) отрезок отображается на отрезок; б) угол отображается на равный ему угол.
488. Докажите, что при движении: а) параллельные прямые отображаются на параллельные прямые; б) параллельные плоскости отображаются на параллельные плоскости.
489. Докажите, что при движении: а) окружность отображается на окружность того же радиуса; б) прямоугольный параллелепипед отображается на прямоугольный параллелепипед с теми же измерениями.
Название темы: Вопросы к главе 5
1. Как расположена точка относительно прямоугольной системы координат, если: а) одна ее координата равна нулю; б) две ее координаты равны нулю?
2. Объясните, почему все точки, лежащие на прямой, параллельной плоскости Оху, имеют одну и ту же аппликату.
2. Объясните, почему все точки, лежащие на прямой, параллельной плоскости Оху, имеют одну и ту же аппликату.
4. Какие координаты имеет вектор СА, если АВ {x1; у1; z1}, ВС {х2; у2; z2}?
5. Первая и вторая координаты ненулевого вектора а равны нулю. Как расположен вектор а по отношению к оси: a) Oz; б) Ох; в) Oy?
6. Первая координата ненулевого вектора а равна нулю. Как расположен вектор а по отношению: а) к координатной плоскости Oxz; б) к оси Ох?
7. Коллинеарны ли векторы: а) а{—5; 3; —1} и b{6; —10; —2}; б) а{-2; 3; 7} и 6{-1; 1,5; 3,5)?
8. Длина радиус-вектора точки М равна 1. Может ли абсцисса точки М равняться: а) 1; б) 2?
9. Длина вектора а равна 3. Может ли одна из координат вектора а равняться: а) 3; б) 5?
10. Абсцисса точки М1 равна 3, а абсцисса точки М2 равна 6. а) Может ли длина отрезка М1М2 быть равной 2? б) Как расположен отрезок М1М2 по отношению к оси Ох, если его длина равна 3?
11. Векторы a и b имеют длины a и b . Чему равно скалярное произведение векторов a и b , если: а) векторы a и b сонаправлены; б) векторы a и b противоположно направлены; в) векторы a и b перпендикулярны; г) угол между векторами a и b равен 60°; д) угол между векторами a и b равен 120°?
12. При каком условии скалярное произведение векторов a и b: а) положительно; б) отрицательно; в) равно нулю?
13. Дан куб ABCDA1B1C1D1. Перпендикулярны ли векторы: a) AD и D1C1; б) BD и СС1; в) А1С1 и AD; г) DB и D1C1; д) ВВ и АС?
14. Первые координаты векторов а и b равны соответственно 1 и 2. Может ли скалярное произведение векторов а и b быть: а) меньше 2; б) равно 2; больше 2?
15. Какие координаты имеет точка А, если при центральной, симметрии с центром А точка В(1; 0; 2) переходит в точку С (2; -1; 4)?
16. Как расположена плоскость по отношению к осям координат Ох и Oz, если при зеркальной симметрии относительно этой плоскости точка М(2; 1; 3) переходит в точку M1 (2; —2; 3)?
17. В какую перчатку (правую или левую) переходит правая перчатка при зеркальной симметрии? осевой симметрии? центральной симметрии?
Название темы: Дополнительные задачи к главе 5
490. Даны векторы а {—5; 0; 5), b (—5; 5; 0] и с{ 1; —2; —3). Найдите координаты вектора: а) 3b — За + Зс; б) —0,1с + 0,8а —0,5b.
491. Коллинеарны ли векторы: а) а {— 5; 3; — 1} и b (6; —10; —2}; б) а{-2; 3; 7} и b {— 1; 1,5; 3,5); в) a{-⅔; 5/9; — 1 } и b {6; -5; 9}; г) а {0,7; -1,2; -5,2} и b {-2,8; 4,8; -20,8}?
492. Даны точки А ( — 5; 7; 3) и В (3; —11; 1). а) На оси Ох найдите точку, ближайшую к середине отрезка АВ. б) Найдите точки, обладающие аналогичным свойством, на осях Оу и Oz.
493. Компланарны ли векторы: а) а{—1; 2; 3}, i + j и i — k; б) b{2; 1; 1,5}, i + j + k и i —j; в) а{1; 1; 1}, b(1; —1; 2} и с (2; 3; -1}?
494. Даны точки А (3; 5; 4), В (4; 6; 5), С (6; —2; 1) и D (5; —3; 0). Докажите, что ABCD — параллелограмм.
495. Даны точки А (2; 0; 1), В (3; 2; 2) и С (2; 3; 6). Найдите координаты точки пересечения медиан треугольника ABC.
496. Даны координаты четырех вершин параллелепипеда ABCDA1B1C1D1: А (3; 0; 2), В (2; 4; 5), А1 (5; 3; 1), D (7; 1; 2). Найдите координаты остальных вершин.
497. Середина отрезка АВ лежит в плоскости Оху. Найдите k, если: а) А (2; 3; - 1), В (5; 7; k); б) А (0; 4; k), В (3; -8; 2); в) А (5; 3; k), В (3; -5; 3k).
498. Найдите координаты единичных векторов, сонаправленных соответственно с векторами а {2; 1; —2} и b{1; 3; 0}.
499. Длина вектора а {х; у; z) равна 5. Найдите ординату вектора а, если х = 2, z=—√5.
500. Даны точки М (2; —1; 3), N ( — 4; 1; —1), Р ( — 3; 1; 2) и Q (1; 1; 0). Вычислите расстояние между серединами отрезков MN и PQ.
501. Найдите расстояние от точки В (— 2; 5; √3) до осей координат.
502. На оси ординат найдите точку, равноудаленную от точек A (13; 2; -1) и В (-15; 7; -18).
503*. Найдите координаты центра окружности, описанной около треугольника с вершинами А (0; 2; 2), В (2; 1; 1), С (2; 2; 2).
504. Вершины треугольника ABC расположены по одну сторону от плоскости α и находятся от этой плоскости на расстояниях 4 дм, 5 дм и 9 дм. Найдите расстояние от точки пересечения медиан треугольника до плоскости α.
505*. Медианой тетраэдра называется отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани. Докажите, что медианы тетраэдра пересекаются в одной точке, которая делит каждую медиану в отношении 3:1, считая от вершины.
506. Даны векторы а {— 1; 5; 3}, b {3; 0; 2}, с{½ -3; 4} и d {2; 1; 0}. Вычислите скалярное произведение: a) ab; б) ас; в) dd; г) (a+ b + c)d; д) (a — b)(c — d).
507. В тетраэдре DABC DA = DB = DC, ∠ADB = 45°, ∠BDC = 60°. Вычислите угол между векторами: а) DA и BD; б) DB и СВ; в) BD и ВА.
508. Все ребра тетраэдра ABCD равны друг другу, D1 — проекция точки D на плоскость ABC. Перпендикулярны ли векторы: а) D1B и D1D; б) DD1 и ВС; в) DA и ВС; г) D1B и DC?
509. Вычислите косинус угла между прямыми АВ и CD, если: а) A (7; -8; 15), В (8; -7; 13), С(2; -3; 5), D(-1; 0; 4); б) A (8; -2; 3), В( 3; -1; 4), С (5; -2; 0), D (7; 0; -2).
510. В кубе ABCDA1B1C1D1 точка М — центр грани ВВ1С1С. Вычислите угол между векторами: а) A1D и АМ; б) MD и ВВ1.
511. В параллелепипеде ABCDA1B1C1D1 ∠BAA1 = ∠BAD =∠DAA1 =60°, АВ =AA1 =AD = 1. Вычислите длины векторов AC1 и BD1.
512. Проекция точки М на плоскость ромба ABCD совпадает с точкой О пересечения его диагоналей. Точка N — середина стороны ВС, АС = 8, DB = МО = 6. Вычислите косинус угла между прямой MN и прямой: а) ВС; б) DC; в) АС; г) DB.
513. В кубе A1B1C1D1 точка М лежит на ребре ВВ1, причем ВМ:МВ1=3:2, а точка N лежит на ребре AD, причем AN:ND = 2:3. Вычислите синус угла между прямой MN и плоскостью грани: а) DD1C1C; б) A1B1C1D1.
514. Лучи ОА, ОВ, ОС и ОМ расположены так, что ∠AOB = ∠ВОС = ∠СОА = 90°, ∠АОМ = φ1, ∠ВОМ = φ2, ∠COM = φ3. Докажите, что
515. Лучи ОА, ОВ и ОС расположены так, что ∠BOC = ∠BOA = 45°, ∠AOC = 60°. Прямая ОН перпендикулярна к плоскости АОВ. Найдите угол между прямыми ОН и ОС.
516. Дан двугранный угол CABD, равный φ (φ<90°). Известно, что АС⊥АВ и ∠DAB = Q. Найдите cos∠CAD.
517. Отрезки СА и DB перпендикулярны к ребру двугранного угла CABD, равного 120°. Известно, что АВ=m, СА = n, BD = p. Найдите CD.
518. При движении прямая а отображается на прямую а1, а плоскость α — на плоскость α1. Докажите, что: а) если a||α, то a1||α1; б) если a⊥α, то a1⊥α1.
519. При зеркальной симметрии относительно плоскости α плоскость β отображается на плоскость β1. Докажите, что если плоскость β образует с плоскостью α угол φ, то и плоскость β1 образует с плоскостью α угол φ.
520. Докажите, что при параллельном переносе на вектор р: а) плоскость, не параллельная вектору p и не содержащая этот вектор, отображается на параллельную ей плоскость; б) плоскость, параллельная вектору p или содержащая этот вектор, отображается на себя.

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн