Задачи на тему Четырехугольники
из задачника Атанасян, Бутузов, Кадомцев, Позняк, Юдина 8 класс по предмету Геометрия

Название темы: Многоугольники
363 Начертите выпуклые пятиугольник и шестиугольник. В каждом многоугольнике из какой-нибудь вершины проведите все диагонали. На сколько треугольников разделяют проведенные диагонали каждый многоугольник?
364 Найдите сумму углов выпуклого: а) пятиугольника; б) шестиугольника; в) десятиугольника.
365 Сколько сторон имеет выпуклый многоугольник, каждый угол которого равен: а) 90°; б) 60°; в) 120°; г) 108°?
366 Найдите стороны четырехугольника, если его периметр равен 8 см, а одна сторона больше каждой из других сторон соответственно на 3 мм, 4 мм и 5 мм.
367 Найдите стороны четырехугольника, если его периметр равен 66 см, первая сторона больше второй на 8 см и на столько же меньше третьей стороны, а четвертая — в три раза больше второй.
368 Найдите углы выпуклого четырехугольника, если они равны друг другу.
369 Найдите углы А, B и С выпуклого четырехугольника АВСD, если ∠A=∠B=∠C, a ∠D=135°.
370 Найдите углы выпуклого четырехугольника, если они пропорциональны числам 1, 2, 4, 5.
Название темы: Параллелограмм и трапеция
371 Докажите, что выпуклый четырехугольник ABCD является параллелограммом, если: a) ∠BAC=∠ACD и ∠BCA=∠DAC; б)AB||CD, ∠A=∠C.
372 Периметр параллелограмма равен 48 см. Найдите стороны параллелограмма, если: а) одна сторона на 3 см больше другой; б) разность двух сторон равна 7 см; в) одна из сторон в два раза больше другой.
373 Периметр параллелограмма ABCD равен 50 см, ∠C = 30°, а перпендикуляр ВН к прямой CD равен 6,5 см. Найдите стороны параллелограмма.
374 Биссектриса угла А параллелограмма ABCD пересекает сторону ВС в точке К. Найдите периметр этого параллелограмма, если ВК= 15 см, КС=9 см.
375 Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 см и 14 см.
376 Найдите углы параллелограмма ABCD, если: a) ∠A = 84°; 6)∠A-∠B = 55°; в) ∠A + ∠C= 142°; г) ∠A = 2∠B; д) ∠CAD=16°, ∠ACD = 37°.
377 В параллелограмме MNPQ проведен перпендикуляр NH к прямой MQ, причем точка Н лежит на стороне MQ. Найдите стороны и углы параллелограмма, если известно, что МН=3см, HQ = 5 см, ∠MNH=30°.
378 Докажите, что параллелограмм является выпуклым четырехугольником.
379 Из вершин В и D параллелограмма ABCD, у которого АВ ≠ ВС и угол А острый, проведены перпендикуляры ВК и DM к прямой АС. Докажите, что четырехугольник BMDK — параллелограмм.
380 На сторонах АВ, ВС, CD и DA четырехугольника ABCD отмечены соответственно точки М, N, Р и Q так, что АМ=СР, BN=DQ, BM=DP, NC=QA. Докажите, что ABCD и MNPQ — параллелограммы.
381 На рисунке 163 изображены два одинаковых колеса тепловоза. Радиусы О1А и O2В равны. Стержень АВ, длина которого равна расстоянию O1O2 между центрами колес, передает движение от одного колеса к другому. Докажите, что отрезки АВ и O1O2 либо параллельны, либо лежат на одной прямой.
382 Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольник вершинами которого являются середины отрезков ОА, ОВ, ОС и OD, — параллелограмм.
383 На диагонали BD параллелограмма ABCD отмечены две точки Р и Q так, что PB=QD. Докажите, что четырехугольник APCQ — параллелограмм.
384 Через середину М стороны АВ треугольника ABC проведена прямая, параллельная стороне ВС. Эта прямая пересекает сторону АС в точке N. Докажите, что AN=NC.
385 Докажите теорему Фалеса1: если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
386 Докажите, что отрезок, соединяющий середины боковых сторон трапеции, параллелен основаниям трапеции.
387 Найдите углы В и D трапеции ABCD с основаниями AD и ВС, если ∠A=36°, ∠C= 117°.
388 Докажите, что в равнобедренной трапеции: а) углы при каждом основании равны; б) диагонали равны.
389 Докажите, что трапеция равнобедренная, если: а) углы при основании равны; б) диагонали трапеции равны.
390 Один из углов равнобедренной трапеции равен 68°. Найдите остальные углы трапеции.
Решение #1.

Условие задачи сформулировано некорректно. Доказательство невозможно.

Пример! Пусть S - площадь паркетной плитки в виде равнобедренной трапеции, S1 - некая площадь, ограниченная стенами. Тогда при S>S1 паркет уложить нельзя.

Решение #2.

392 Основания прямоугольной трапеции равны а и b, один из углов равен а. Найдите: а) большую боковую сторону трапеции, если a=4 см, b = 7см, α=60°; б) меньшую боковую сторону трапеции, если a=10 см, b=15см, α=45°.
393 Постройте параллелограмм: а) по двум смежным сторонам и углу между ними; б) по двум диагоналям и углу между ними; в) по двум смежным сторонам и соединяющей их концы диагонали.
394 Даны три точки А, В и С, не лежащие на одной прямой. Постройте параллелограмм так, чтобы три его вершины совпадали с данными точками. Сколько таких параллелограммов можно построить?
395 Даны острый угол hk и два отрезка P1Q1 и P2Q2. Постройте параллелограмм ABCD так, чтобы расстояние между параллельными прямыми АВ и DC равнялось P1Q1, AB=P2Q2 и ∠A=∠hk.
396 Разделите данный отрезок АВ на п равных частей. Решение
397 Постройте равнобедренную трапецию ABCD: а) по основанию AD, углу А и боковой стороне АВ; б) по основанию ВС, боковой стороне АВ и диагонали BD.
398 Постройте прямоугольную трапецию ABCD по основаниям и боковой стороне AD, перпендикулярной к основаниям.
Название темы: Прямоугольник; ромб; квадрат
399 Докажите, что параллелограмм, один из углов которого прямой, является прямоугольником.
400 Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.
401 Найдите периметр прямоугольника ABCD, если биссектриса угла А делит сторону: а) ВС на отрезки 45,6 см и 7,85 см; б) DC на отрезки 2,7 дм и 4,5 дм.
402 Диагонали прямоугольника ABCD пересекаются в точке О. Докажите, что треугольники AOD и АОВ равнобедренные.
403 В прямоугольнике ABCD диагонали пересекаются в точке О. Найдите периметр треугольника АОВ, если ∠CAD=30°, АС= 12 см.
404 Докажите, что медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы.
405 В ромбе одна из диагоналей равна стороне. Найдите: а) углы ромба; б) углы, которые диагонали ромба образуют с его сторонами.
406 Найдите периметр ромба ABCD, в котором ∠B=60°, АС = 10,5 см.
407 Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен 45°.
408 Докажите, что параллелограмм является ромбом, если: а) его диагонали взаимно перпендикулярны; б) диагональ является биссектрисой его угла.
409 Докажите, что ромб, у которого один угол прямой, является квадратом.
410 Является ли четырехугольник квадратом, если его диагонали: а) равны и взаимно перпендикулярны; б) взаимно перпендикулярны и имеют общую середину; в) равны, взаимно перпендикулярны и имеют общую середину?
411 В прямоугольном треугольнике проведена биссектриса прямого угла. Через точку пересечения этой биссектрисы с гипотенузой проведены прямые, параллельные катетам. Докажите, что полученный четырехугольник — квадрат.
412 Даны равнобедренный прямоугольный треугольник ABC с прямым углом С, катетом АС = 12 см и квадрат CDEF, такой, что две его стороны лежат на катетах, а вершина Е — на гипотенузе треугольника. Найдите периметр квадрата.
413 Постройте прямоугольник: а) по двум смежным сторонам; б) по стороне и диагонали; в) по диагонали и углу между диагоналями.
414 Постройте ромб: а) по двум диагоналям; б) по стороне и углу.
415 Постройте квадрат: а) по стороне; б) по диагонали.
416 Даны две точки А и В, симметричные относительно некоторой прямой, и точка М. Постройте точку, симметричную точке М относительно той же прямой.
417 Сколько осей симметрии имеет: а) отрезок; б) прямая; в) луч?
418 Какие из следующих букв имеют ось симметрии: А, Б, Г, Е, О, F?
419 Докажите, что прямая, проходящая через середины противоположных сторон прямоугольника, является его осью симметрии.
420 Докажите, что прямая, содержащая биссектрису равнобедренного треугольника, проведенную к основанию, является осью симметрии треугольника.
421 Даны точки А, В и М. Постройте точку, симметричную точке М относительно середины отрезка АВ.
422 Имеют ли центр симметрии: а) отрезок; б) луч; в) пара пересекающихся прямых; г) квадрат?
423 Какие из следующих букв имеют центр симметрии: А, О, М, X, К?
Название темы: Дополнительные задачи
424 Докажите, что если не все углы выпуклого четырехугольника равны друг другу, то хотя бы один из них тупой.
425 Периметр параллелограмма ABCD равен 46 см, АВ=14см. Какую сторону параллелограмма пересекает биссектриса угла А? Найдите отрезки, которые образуются при этом пересечении.
426 Стороны параллелограмма равны 10 см и 3 см. Биссектрисы двух углов, прилежащих к большей стороне, делят противоположную сторону на три отрезка. Найдите эти отрезки.
427 Через произвольную точку основания равнобедренного треугольника проведены прямые, параллельные боковым сторонам треугольника. Докажите, что периметр получившегося четырехугольника равен сумме боковых сторон данного треугольника.
428 В параллелограмме, смежные стороны которого не равны, проведены биссектрисы углов. Докажите, что при их пересечении образуется прямоугольник.
429 Докажите, что выпуклый четырехугольник является параллелограммом, если сумма углов, прилежащих к каждой из двух смежных сторон, равна 180°.
430 Докажите, что выпуклый четырехугольник является параллелограммом, если его противоположные углы попарно равны.
431 Точка К— середина медианы AM треугольника ABC. Прямая ВК пересекает сторону АС в точке D. Докажите, что AD= ⅓ АС.
432 Точки М и N — середины сторон AD и ВС параллелограмма ABCD. Докажите, что прямые AN и МС делят диагональ BD на три равные части.
433 Из вершины В ромба ABCD проведены перпендикуляры ВК и ВМ к прямым AD и DC. Докажите, что луч BD является биссектрисой угла КВМ.
434 Докажите, что точка пересечения диагоналей ромба равноудалена от его сторон.
435 Докажите, что середина отрезка, соединяющего вершину треугольника с любой точкой противоположной стороны, лежит на отрезке с концами в серединах двух других сторон.
436 Диагональ АС квадрата ABCD равна 18,4 см. Прямая, проходящая через точку А и перпендикулярная к прямой АС, пересекает прямые ВС и CD соответственно в точках М и N. Найдите MN.
437 На диагонали АС квадрата ABCD взята точка М так, что AM =АВ. Через точку М проведена прямая, перпендикулярная к прямой АС и пересекающая ВС в точке Н. Докажите, что ВН=НМ=МС.
438 В трапеции ABCD с большим основанием AD диагональ АС перпендикулярна к боковой стороне CD, ∠BAC = ∠CAD. Найдите AD, если периметр трапеции равен 20 см, a ∠D=60°.
439* Сумма углов при одном из оснований трапеции равна 90°. Докажите, что отрезок, соединяющий середины оснований трапеции, равен их полуразности.
440* На двух сторонах треугольника вне его построены квадраты. Докажите, что отрезок, соединяющий концы сторон квадратов, выходящих из одной вершины треугольника, в два раза больше медианы треугольника, выходящей из той же вершины.
441 Докажите, что прямые, содержащие диагонали ромба, являются его осями симметрии.
442 Докажите, что точка пересечения диагоналей параллелограмма является его центром симметрии.
443 Сколько центров симметрии имеет пара параллельных прямых?
444* Докажите, что если фигура имеет две взаимно перпендикулярные оси симметрии, то точка их пересечения является центром симметрии фигуры.

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн