Задачи на тему Задачи повышенной трудности
из задачника Атанасян, Бутузов, Кадомцев, Позняк, Юдина 7 класс по предмету Геометрия

Название темы: Задачи к главе 1
322 Пусть а — число, выражающее длину отрезка АВ при единице измерения CD, а b — число, выражающее длину отрезка CD при единице измерения АВ. Как связаны между собой числа а и b?
323 Длина отрезка АВ при единице измерения E1Fl выражается числом m, а при единице измерения — числом n. Каким числом выражается длина отрезка E1F1 при единице измерения E2F2?
324 Пусть ∠hk — меньший из двух смежных углов hk и hl. Докажите, что
325 Пять прямых пересекаются в одной точке (рис. 147). Найдите сумму углов 1, 2, 3, 4 и 5.
326 Даны шесть попарно пересекающихся прямых. Известно, что через точку пересечения любых двух прямых проходит по крайней мере еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку.
327 Даны шесть точек. Известно, что прямая, проходящая через любые две точки, содержит по крайней мере еще одну из данных точек. Докажите, что все эти точки лежат на одной прямой.
Название темы: Задачи к главе 2
328 Точки С1 и С2 лежат по разные стороны от прямой AB и расположены так, что АС =BC2 и ∠BAC1=∠ABC2. Докажите, что прямая С1С2 проходит через середину отрезка AB.
329 Докажите, что если угол, прилежащая к нему сторона и сумма двух других сторон одного треугольника соответственно равны углу, прилежащей к нему стороне и сумме двух других сторон другого треугольника, то такие треугольники равны.
330 Сторона и два угла одного треугольника равны какой-то стороне и каким-то двум углам другого. Могут ли эти треугольники быть неравными?
Название темы: Задачи к главе 3 и 4
331 Две стороны и угол одного треугольника равны каким-то двум сторонам и углу другого треугольника. Могут ли эти треугольники быть неравными?
332 Отрезки АВ и CD пересекаются в точке О. Докажите, что OC=OD, если AC=AO=BO=BD.
333 Прямые, содержащие биссектрисы внешних углов при вершинах В и С треугольника ABC, пересекаются в точке О. Найдите угол BOC, если угол А равен а.
334 Через каждую вершину данного треугольника проведена прямая, перпендикулярная к биссектрисе треугольника, исходящей из этой вершины. Отрезки этих прямых вместе со сторонами данного треугольника образуют три треугольника. Докажите, что углы этих треугольников соответственно равны.
335 В каждом из следующих случаев определите вид треугольника: а) сумма любых двух углов больше 90°; б) каждый угол меньше суммы двух других углов.
336 Докажите, что угол треугольника является острым, прямым или тупым, если медиана, проведенная из вершины этого угла, соответственно больше, равна или меньше половины противоположной стороны.
337 Внутри равнобедренного треугольника ABC с основанием ВС взята точка М такая, что ∠MBC = 30°, ∠MCB = 10°. Найдите угол АМС, если ∠BAC=80°.
338 Докажите, что любой отрезок с концами на разных сторонах треугольника не больше наибольшей из сторон треугольника.
339 Отрезок ВВ1 — биссектриса треугольника ABC. Докажите, что ВА > В1А и ВС > В1С.
340 Внутри треугольника ABC взята точка D такая, что AD=AB. Докажите, что АС > АВ.
341 В треугольнике ABC сторона АВ больше стороны АС, отрезок AD — биссектриса. Докажите, что ∠ADB >∠ADC и BD > CD.
342 Докажите теорему: если в треугольнике биссектриса является медианой, то треугольник равнобедренный.
343 Две стороны треугольника не равны друг другу. Докажите, что медиана, проведенная из их общей вершины, составляет с меньшей из сторон больший угол.
344 В треугольнике ABC стороны АВ и АС не равны, отрезок AM соединяет вершину А с произвольной точкой М стороны ВС. Докажите, что треугольники АМВ и АМС не равны друг другу.
345 Через вершину А треугольника ABC проведена прямая, перпендикулярная к биссектрисе угла А, а из вершины В проведен перпендикуляр ВН к этой прямой. Докажите, что периметр треугольника ВСН больше периметра треугольника ABC.
346 В треугольнике ABC, где АВ < АС, отрезок AD — биссектриса, отрезок АН — высота. Докажите, что точка Н лежит на луче DB.
347 Докажите, что в неравнобедренном треугольнике основание биссектрисы треугольника лежит между основаниями медианы и высоты, проведенных из этой же вершины.
348 Докажите, что в прямоугольном треугольнике с неравными катетами биссектриса прямого угла делит угол между высотой и медианой, проведенными из той же вершины, пополам.
349 Медиана и высота треугольника, проведенные из одной вершины угла треугольника, делят этот угол на три равные части. Докажите, что треугольник прямоугольный.
350 В треугольнике ABC высота АА1 не меньше стороны ВС, а высота ВВ1 не меньше стороны АС. Докажите, что треугольник ABC — равнобедренный и прямоугольный.
Название темы: Задачи на построение
351 Постройте треугольник по двум сторонам и высоте к третьей стороне.
352 Даны две точки А и B и прямая а, не проходящая через эти точки. На прямой а постройте точку, равноудаленную от точек А и B. Всегда ли задача имеет решение?
353 Постройте точку, лежащую на данной окружности и равноудаленную от концов данного отрезка. Сколько решений может иметь задача?
354 Через три данные точки проведите окружность. Всегда ли задача имеет решение?
355 Точки А и B лежат по одну сторону от прямой а. Постройте точку М прямой а так, чтобы сумма AM + MB имела наименьшее значение, т.е. была бы меньше суммы АХ + ХB, где X — любая точка прямой а, отличная от М.
356 Постройте прямоугольный треугольник ABC, если даны острый угол B и биссектриса BD.
357 На данной окружности постройте точку, равноудаленную от двух данных пересекающихся прямых. Сколько решений может иметь задача?
358 Даны три попарно пересекающиеся прямые, не проходящие через одну точку. Постройте точку, равноудаленную от этих прямых. Сколько решений имеет задача?
359 Дана окружность с центром О и точка А вне ее. Проведите через точку А прямую, пересекающую окружность в точках B и С таких, что AB=BC.
360 Постройте треугольник по периметру, одному из углов и высоте, проведенной из вершины другого угла.
361 Постройте треугольник по периметру и двум углам.
362 Постройте треугольник по стороне, разности углов при этой стороне и сумме двух других сторон.

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте! Здесь вы найдете решебники и решения задач бесплатно, без регистрации.
Видео онлайн